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Abstract—Nonorthogonal multiple access (NOMA) is a promis-
ing technology to meet the demands of the next generation wireless
networks on massive connectivity, high throughput and reliability,
improved fairness, and low latency. In this context, code-domain
NOMA which attempts to serve K users in M ⩽ K orthogonal re-
source blocks, using a pattern matrix, is of utmost interest. How-
ever, extending the pattern matrix dimensions severely increases
the detection complexity and hampers on the significant advan-
tages that can be achieved using large pattern matrices. In this
paper, we propose a novel approach toward code-domain NOMA
which factorizes the pattern matrix as the Kronecker product of
some other factor matrices each with a smaller dimension. There-
fore, both the pattern matrix design at the transmitter side and the
mixed symbols’ detection at the receiver side can be performed over
much smaller dimensions and with a remarkably reduced complex-
ity and latency. As a consequence, the system can significantly be
overloaded to effectively support the requirements of the next gen-
eration wireless networks without any considerable increase on the
system complexity.

I. INTRODUCTION

Nonorthogonal multiple access (NOMA) is becoming one of
the key enabling technologies for the fifth-generation (5G) wire-
less networks and the applications beyond, including the Inter-
net of Things (IoT), and massive machine-type communications
(MMTC) [1], [2]. NOMA, through serving multiple users in the
same orthogonal resource block, or equivalently, a set of users
in a smaller set of resource elements (REs), attempts to signif-
icantly increase the system throughput and reliability, improve
the users’ fairness, reduce the latency, and support the mas-
sive connectivity [3]. NOMA is a general principle and many
of the recently proposed multiple access techniques can be con-
sidered as special cases. However, generally speaking, NOMA
techniques can be classified into two different categories: power-
domain NOMA, and code-domain NOMA.

Power-domain NOMA serves multiple users in the same
orthogonal resource block through allocating different power
levels to different users. In contrast to the traditional power
allocation methods, the users with poorer channel conditions
are assigned more powers [4]. Power-domain NOMA has
attracted significant attention in recent years and many inter-
esting problems have been addressed in this context, including
cooperative NOMA [5], NOMA with simultaneous wireless
information and power transfer (SWIPT) [6], multiple-input
multiple-output (MIMO) NOMA [7], and NOMA in mil-
limeter wave communications [8]. Detection procedure in
power-domain NOMA highly relies on successive interference
cancellation (SIC). Therefore, when the channel condition of
different users paired together is close to each other, SIC-based
power-domain NOMA does not work well. In order to enable
(near) power-balanced NOMA, the authors of [9] proposed
network-coded multiple access (NOMA); a new NOMA ar-
chitecture which jointly employs the physical-layer network
coding and multiuser decoding to significantly increase the
NOMA throughput.

Code-domain NOMA, on the other hand, attempts to serve a
set of users, say K, in a set of M orthogonal resource blocks,

M ⩽ K, using a pattern matrix. The pattern matrix comprises
K pattern vectors assigned to each user specifying the set of
REs available to them. As an interesting feature of code-domain
NOMA, it can work well even in power-balanced scenarios
when each user is served by a unique pattern vector. Neverthe-
less, code-domain NOMA has received relatively less attention
compared to the power-domain counterpart, because it usually
requires rather complex multiuser nonlinear detection algo-
rithms, such as massage passing algorithm (MPA), maximum
likelihood (ML) detection, and maximum a posteriori (MAP)
detection. In this context, sparse code multiple access (SCMA)
was proposed in [10] based on directly mapping the incoming
bits to multidimensional codewords of a SCMA codebook set.
A low complexity SCMA decoding algorithm has been further
suggested in [11] based on list sphere decoding. Moreover,
lattice partition multiple access (LPMA) has been proposed
in [12], [13] based on multilevel lattice codes for multiple
users. Interleave-grid multiple access (IGMA) has also been
proposed in order to increase the user multiplexing capability
and improve the performance [14]. In addition, pattern division
multiple access (PDMA) has been introduced in [15], [16],
where the pattern vectors are designed with disparate order of
transmission diversity to mitigate the error propagation prob-
lem in SIC receivers. As a consequence, the sparsity feature of
the pattern matrix does not necessarily hold, i.e., the number
of REs allocated to a particular user may be comparable to the
total number of resource blocks M .

Design of the pattern matrix plays a critical role in code-
domain NOMA to balance the trade-off between the system per-
formance and complexity. Impact of pattern matrix on the av-
erage sum rate of SCMA systems has been investigated in [17]
where a low-complexity iterative algorithm has been proposed
to facilitate the design of pattern matrix. Moreover, the total
throughput of low-density code-domain (LDCD) NOMA has re-
cently been characterized in [18] for regular random pattern ma-
trices with large dimensions. It is well understood that, for a
given overload factor β = K/M , the higher the dimension of
pattern matrix we have, the better the performance we get. This
is because more number of REs can be assigned to each user for
a higher dimension of pattern matrix [16]. However, increasing
the pattern matrix dimension results in a significantly higher de-
tection complexity. Inspired by this trade-off between the system
performance and detection complexity, we propose a novel ap-
proach toward code-domain NOMA which factorizes the pattern
matrix as the Kronecker product of some other smaller factor
matrices. As a consequence, both the pattern matrix design at the
transmitter and the mixed symbols’ detection at the receiver can
be performed over much smaller dimensions and with a remark-
ably reduced complexity, through recursive detection; hence, the
system performance can significantly be improved without any
considerable increase on the complexity.

The rest of the paper is organized as follows. In Section II,
we briefly review the basics of code-domain NOMA with pat-
tern matrix and highlight the preliminaries. In Section III, we



describe the proposed method, and provide an illustrating ex-
ample. In Section IV, we classify the design procedures, obtain
the sum rate formula, and analyze the detection complexity. We
provide the numerical results in Section V, and conclude the
paper in Section VI.

II. PRELIMINARIES AND SYSTEM MODEL

We consider a collection of K users communicating using M
REs, and define the overload factor as β = K/M ⩾ 1 implying
the multiplexing gain of PDMA compared to orthogonal multi-
ple access (OMA). The modulation symbol xk of the k-th user
is spread over M orthogonal REs using the pattern vector gk as
vk = gkxk, 1 ⩽ k ⩽ K, where gk ∈ BM×1, with B = {0, 1},
is an M×1 binary vector defining the set of REs available to the
k-th user; the k-th user can use the i-th RE, 1 ⩽ i ⩽ M , if the
i-th element of gk is “1”, i.e., gi,k = gk(i) = 1, and vice versa.
Then the (M ×K)-dimensional pattern matrix G ∈ BM×K can
be constructed as [16]

GM×K = [g1 g2 · · · gK ] = [gi,k]M×K . (1)

For the uplink transmission each k-th user transmits the
spread symbol, using its pattern vector, to the base station (BS).
Therefore, assuming perfect synchronization at the BS, the re-
ceived (M × 1)-dimensional vector, comprising the received
signal at each of M REs, can be modeled as the Gaussian
vector channel model of

y =
∑︂K

k=1
diag(hk)vk + n, (2)

where hk is the vector modeling the uplink channel response of
the k-th user at all of M REs, and n is the noise vector at the
BS with length M . Furthermore, diag(hk) is a diagonal matrix
consisting of the elements of hk. Then the uplink transmission
model can be reformulated as

y = Hx+ n, (3)

in which x = [x1, x2, ..., xK ]T , H = H•GM×K is the PDMA
equivalent uplink channel response, H = [h1,h2, ...,hK ], and
• denotes the element-wise product [16].

Moreover, for the downlink transmission the BS first encodes
the data symbol of each user according to its pattern vector
and then transmits the superimposed encoded symbols

∑︁K
j=1 vj

through the channel. Therefore, the received signal at the k-th
user can be expressed as

yk = diag(hk)
∑︂K

j=1
gjxj + nk = Hkx+ nk, (4)

where Hk = diag(hk)GM×K is the PDMA equivalent down-
link channel response of the k-th user. Moreover, hk and nk

are, respectively, the downlink channel response and noise vec-
tor at the k-th user with length M [16]. We further assume that
the channel state information (CSI) is available at the transmitter
side such that the channel gains are equalized from the receiver
viewpoint. Therefore, the received signal vector for both uplink
and downlink transmissions can be expressed as y = Gx+ n.

As a rather simple multiuser detection algorithm in NOMA
systems, SIC properly trades off between the system perfor-
mance and complexity. However, SIC receivers suffer from er-
ror propagation problem meaning that the system performance
highly relies on the correctness of early-detected users. To deal
with this problem, we can either improve the reliability of the
firstly-decoded users or employ more advanced detection algo-
rithms such as ML and MAP. In [16], disparate diversity orders
are adopted for different users by assigning patterns with heav-
ier weights to those early-detected users in order to increase

their transmission reliability. Furthermore, employing more ad-
vanced detection algorithms severely increases the system com-
plexity especially for larger dimension of the pattern matrix;
this may hinder their practical implementation particularly for
downlink transmission where the users are supposed to have
a lower computational resources than the BS. In the next sec-
tion, we elaborate how our proposed method can support much
larger dimensions of the pattern matrices, even with heavier pat-
tern weights, to boost massive connectivity without a significant
increase on the overall system complexity.

III. PROPOSED DESIGN METHOD

A. Fundamentals of the Recursive Pattern Matrix Design
Depending on the number of users and the available REs to

them, we propose factorizing the pattern matrix as the Kronecker
product of L smaller factor matrices as

GM×K = G
(1)
m1×k1

⊗G
(2)
m2×k2

⊗ ...⊗G
(L)
mL×kL

, (5)

where L is a design parameter, and ⊗ denotes the Kronecker
product defined as

Am×k ⊗Bm′×k′ =

⎡⎢⎣a11B · · · a1kB
...

. . .
...

am1B · · · amkB

⎤⎥⎦ (6)

for any two matrices A and B. Then the dimensions of the
resulting pattern matrix in (5) can be obtained based on the di-
mensions of the factor matrices as M =

∏︁L
l=1 ml, and K =∏︁L

l=1 kl. In general, if at least one of M or K is not a prime
number, we can find some ml > 1 or kl > 1 to factorize the
pattern matrix as the Kronecker product of some smaller fac-
tor matrices. On the other hand, if both M and K are prime
numbers, L is equal to one and the design procedure simplifies
to that of conventional pattern matrix design (such as PDMA
[16]). Note that both M and K are design parameters and we
can always group an appropriate number of users with a specific
number of REs to optimize the system in terms of performance
and complexity.

The proposed structure not only alleviates the detection com-
plexity at the receiver side (through recursive detection as will be
clarified through an illustrating example in the next subsection)
but also significantly reduces the search domain at the transmit-
ting party, enabling the usage of large pattern matrices with a
reasonable complexity for massive communications. In fact, a
regular pattern matrix design requires a comprehensive search
over all

(︁
2M−1

K

)︁
possible (M × K)-dimensional matrices with

distinct nonzero columns (patterns assigned to each user) to find
an optimal pattern matrix [16]. On the other hand, it is easy to
show that satisfying distinct nonzero columns for the overall
pattern matrix GM×K of the form (5) requires distinct nonzero
columns for all of the factor matrices G

(l)
ml×kl

, l = 1, 2, ..., L.
In this case, the total search domain for our proposed design
method reduces to

∏︁L
l=1

(︁
2ml−1

kl

)︁
which is much smaller than(︁

2M−1
K

)︁
. For example, for M = 6 and K = 9, the regular pat-

tern matrix design requires searching over
(︁
26−1

9

)︁
= 2.36×1010

possible matrices, while our design method with factorizing the
overall pattern matrix as the Kronecker product of G(1)

2×3⊗G
(2)
3×3

only needs to search over
(︁
22−1

3

)︁
.
(︁
23−1

3

)︁
= 35 matrices. Note

that if, for some l, 2ml −1 < kl, then we cannot satisfy distinct
nonzero columns for the factor matrix G

(l)
ml×kl

. Consequently,
as it will be demonstrated in the following example, the overall
pattern matrix GM×K will have some repeated columns, i.e.,



the same pattern vectors for some of the users. In such circum-
stances, we can either use more advanced detection methods
such as MAP, though over much smaller dimensions, or assign
different power coefficients to the users having the same pattern
vectors. It is worth mentioning that recursive construction of
large matrices based on the Kronecker product of some smaller
matrices has been used in different contexts such as polar coding
[19] and its later versions like compound polar coding [20].

B. An Illustrating Example
Here we provide an illustrating example to clarify the recur-

sive detection method and facilitate the performance character-
ization procedures in the next section.
Example 1. Consider a code-domain NOMA network with K =
18 users over M = 9 REs realized using the Kronecker product
of the following three factor matrices

G
(1)
1×2 = [1 1] , G

(2)
3×3 = G

(3)
3×3 =

[︄
1 1 0
1 0 1
0 1 1

]︄
. (7)

Then the resulting overall pattern matrix can be obtained as
G9×18 = G

(1)
1×2⊗G

(2)
3×3⊗G

(3)
3×3. And assuming the availability

of CSI, the received signal vector, either in uplink or downlink
reception, can be represented as y9×1 = G9×18x18×1 + n9×1.

It is easy to verify that the k′-th and (k′ + 9)-th columns,
k′ = 1, 2, ..., 9, of the overall pattern matrix G9×18 are the
same, meaning that both the k′-th and (k′ + 9)-th users have
the same pattern vector gk′ . This is because both of the ele-
ments of G(1)

1×2 are the same and this duplicates G
(2)
3×3 ⊗G

(3)
3×3

in the construction of the overall pattern matrix. As a result, the
data symbols of the k′-th and (k′ + 9)-th users, i.e., xk′ and
xk′+9, are always coupled together, leading us to define new
symbols tk′ = xk′ + xk′+9. Therefore, we can write the re-
ceived signals at different REs yi’s, i = 1, 2, ..., 9, as the linear
combination of tk′ ’s, defined based on the rows of the square
matrix G

(2)
3×3 ⊗G

(3)
3×3, plus the noise components ni’s (e.g., the

received signal at the first RE is given by y1 = x1 + x2 + x4 +
x5 + x10 + x11 + x13 + x14 +n1 = t1 + t2 + t4 + t5 +n1). The
resulting set of 9 equations for yi’s can be analyzed using dif-
ferent multiuser detection methods to find tk′ ’s. However, the
proposed design method in this paper can recursively find the
data symbols with much lower complexity. Here, for the sake
of brevity, we focus on the detection of t1, t4, and t7. The rest
of the symbols can be detected in a similar recursive procedure.
Let us define new variables Z1, Z4, and Z7 as the combination
of some of the received signals as

Z1 = y1 + y2 − y3 = 2t1 + 2t4 + n′
1,

Z4 = y4 + y5 − y6 = 2t1 + 2t7 + n′
4,

Z7 = y7 + y8 − y9 = 2t4 + 2t7 + n′
7, (8)

where n′
1 = n1 + n2 − n3, n′

4 = n4 + n5 − n6, and n′
7 =

n7+n8−n9. Therefore, the effective signal-to-noise ratio (SNR)
is increased by a factor of 4/3 because the noise elements in
different REs nk′ ’s are independent, i.e., each of n′

k′ ’s has the
variance of σ′2 = 3σ2, where σ2 is the variance of original noise
elements nk′ ’s. Again, we can apply the recursive procedure to
get much simpler equations as

U1 = Z1 + Z4 − Z7 = 4t1 + n′′
1 ,

U4 = Z1 + Z7 − Z4 = 4t4 + n′′
4 ,

U7 = Z4 + Z7 − Z1 = 4t7 + n′′
7 , (9)

in which n′′
1 = n′

1 + n′
4 − n′

7, n′′
4 = n′

1 + n′
7 − n′

4, and n′′
7 =

n′
4 + n′

7 − n′
1. Therefore, the effective SNR is increased again

by a factor of 4/3 as the resulting noise components n′′
k′ ’s have

the variance of σ′′2 = 3σ′2 = 32σ2. Finally, based on (9), the
original data symbols xk’s can be obtained using optimal MAP
detection over simple equations of the form

Uk′ = 4xk′ + 4xk′+9 + n′′
k′ , k′ = 1, 2, ..., 9 (10)

which have much smaller dimensions (i.e., 1× 2) compared to
the original pattern matrix of dimension 9× 18.
Remark 1. Although the effective reduction on the dimension
of equations, using the proposed recursive detection, enables the
application of advanced detection methods such as MAP, we
can also exploit the power-domain NOMA concept to group the
users having the same pattern vector (here the k′-th and (k′+9)-
th users) in order to differentiate between those users and further
boost the performance and reduce the complexity of the system;
this interesting problem will be explored in our future work.

IV. PERFORMANCE CHARACTERIZATION

The previous example gives a good idea about the potentials
of the proposed code-domain NOMA approach and illustrates
the process of the low-complexity recursive detection. However,
it raises a couple of important questions which should be care-
fully addressed. In particular, what kind of matrices should be
selected and how we can find the optimal factor matrices. How
the received signals in different REs can be combined to get
smaller dimensions and simpler sets of equations (e.g., convert-
ing (8) to (9)). What exactly the gain of such a combining will
be in terms of increasing the effective SNR. How many equa-
tions and with what dimensions will be left at the end to perform
the advanced detection algorithms, such as MAP, and then what
would be the overall detection complexity? And, given a set of
factor matrices to construct a pattern matrix, what is the overall
system performance in terms of the average sum rate? In this
section, in order to appropriately answer these issues, we con-
sider a special case where G

(1)
m1×k1

= Fmf×kf
is a rectangular

matrix with mf < kf and all of the other r = L − 1 factor
matrices are the same square matrices as G

(l)
ml×kl

= Pmp×mp
,

l = 2, 3, ..., L (hence, the overload factor is β = kf/mf > 1),
and leave the general study on the pattern matrix construction
to the future research. Therefore, the overall pattern matrix can
be represented as GM×K = Fmf×kf

⊗ P⊗r
mp×mp

, where P⊗r

implies the r-times Kronecker product of P with itself.

A. Pattern Matrix Design and Recursive Combining

With the considered pattern matrix structure, G = F ⊗P⊗r,
both the combining procedure of the received signals in different
REs and the resulting gains in the average SNRs, in each re-
cursion, directly relate to the square factor matrix P . Given the
v-th possible factor matrix P v , v = 1, 2, ...,

(︁
2mp−1
mp

)︁
, at each

l-th iteration, we have some set of auxiliary equations of the
form⎡⎢⎢⎢⎣

yl1
yl2
...

ylmp

⎤⎥⎥⎥⎦=
⎡⎢⎢⎢⎣

pv11 pv12 · · · pv1mp

pv21 pv22 · · · pv2mp

...
...

. . .
...

pvmp1 pvmp2 · · · pvmpmp

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

xl
1

xl
2
...

xl
mp

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣

nl
1

nl
2
...

nl
mp

⎤⎥⎥⎥⎦, (11)

where pvij is the (i, j)-th element of the factor matrix P v . And
ylj , xl

j , and nl
j are respectively the j-th auxiliary received sig-

nal, data symbol, and noise component at the l-th recursion (see,
e.g., the right hand side of (8) and recall that, with some changes
of notation, Zj , 2tj , and n′

j are equivalent to ylj , xl
j , and nl

j in
the notation of Eq. (11)).



Algorithm 1 Calculation of the combining coefficients and the
corresponding individual SNRs

1: Input: dimension of the square matrix mp

2: Output: combining coefficients and SNRs for all v’s and j’s

3: for v = 1 :
(︁
2mp−1
mp

)︁
do

4: P v =
[︁
pvij

]︁
mp×mp

5: for j = 1 : mp do
6: Find all sets of coefficients

{︂
α
′(v,j)
i=1:mp

}︂
Such That:

7: C1: α′(v,j)
i ∈ {−1, 0, 1}

8: C2:
∑︁mp

i=1 α
′(v,j)
i pvij = w′

v,j ̸= 0

9: C3:
∑︁mp

i=1 α
′(v,j)
i pvij′ = 0, j′ ̸= j = 1, 2, ...,mp

10: Calculate γ′
v,j=[w′

v,j ]
2
/︂∑︁mp

i=1(α
′(v,j)
i )2

11: Output
{︂
α
(v,j)
i=1:mp

}︂
= argmax γ′

v,j over
{︂
α
′(v,j)
i=1:mp

}︂
12: Output γv,j =

[︂∑︁mp

i=1 α
(v,j)
i pvij

]︂2/︂∑︁mp

i=1(α
(v,j)
i )2

13: end for
14: end for

In order to obtain the effective combining coefficients (such
as combining Zj’s in (9)) that facilitate the recursive detection
with a low complexity and in the meantime provide the max-
imum increase of the SNRs, we find the so-called systematic
representation of P v , i.e., for each j-th data symbol we find
all the linear combinations of the rows of the factor matrix that
result in the form xl

j

∑︁mp

i=1 α
(v,j)
i pvij which only contains xl

j .
In this representation, α(v,j)

i ∈ {−1, 0, 1}, i = 1, 2, ...,mp, are
the combining coefficients. Such a combination, due to the in-
dependence of the noise components nl

j’s, multiplies the SNR
of the previous iteration by γv,j = w2

v,j/
∑︁mp

i=1(α
(v,j)
i )2, where

wv,j =
∑︁mp

i=1 α
(v,j)
i pvij is the weight of the desired data symbol

xl
j after the combination. Then the selection procedure for the

combining coefficients that yield the maximum SNR for each
auxiliary data symbol can be summarized as Algorithm 1.
Remark 2. The optimization procedure in Algorithm 1 is per-
formed over all

(︁
2mp−1
mp

)︁
possible factor matrices with distinct

nonzero columns, and then the optimal square factor matrix,
the gains on the SNRs, and the efficient combining coefficients
are obtained by choosing the best answer set satisfying further
constraints, e.g., maximizing the average sum rate. We should
emphasize based on our hierarchical construction that even for
the pattern matrices with large overall dimensions the search
process in Algorithm 1 is performed over square factor matri-
ces P with much smaller dimensions mp; this further paves the
way toward massive code-domain NOMA.
Remark 3. It is easy to verify that for the factor matrices with
linearly-independent rows there is only one set of coefficients
satisfying the constraints in Algorithm 1 for each data symbol.

B. Detection Procedure and its Complexity
In this subsection, we first elaborate the proposed recursive

detection method and then characterize its complexity.
1) Detection Procedure: Assume that the communication

protocol is established between the transmitters and receivers,
i.e., the design parameters such as the optimal square factor
matrix Pmp×mp

and combining coefficients from Algorithm 1
(also recall Remark 2), number of recursions r = L − 1, and
the rectangular matrix Fmf×kf

are known for the receiver (ei-
ther a typical user during the downlink phase or the BS during

the uplink transmission); therefore, the pattern matrix structure
GM×K = Fmf×kf

⊗ P⊗r
mp×mp

is known. Given the combin-
ing coefficients, we can further define an mp × mp matrix α

comprising the combining vectors {α(j)
i }mp

i=1 as its j-th row
such that the matrix product of αP gives an mp ×mp diago-
nal matrix with the j-th diagonal element wj =

∑︁mp

i=1 α
(j)
i pij

being the weight of the j-th data symbol after the combina-
tion (recall the constraints for the combining coefficients from
Algorithm 1).

First Recursion: In order to perform the detection,
the receiver in the first recursion takes the vector of re-
ceived signals over M1 = M = mfm

r
p REs, i.e., yi’s,

i = 1, 2, ...,M , and divides them into M1/mp = mfm
r−1
p

groups of mp equations; therefore, the i1-th group includes
{y(i1−1)mp+1, y(i1−1)mp+2, ..., yi1mp

}. Each of these yi’s
contains at most K different transmitted symbols xk’s,
k = 1, 2, ...,K, since each one is constructed as a linear com-
bination of xk’s, defined based on the i-th row of the overall
pattern matrix GM×K , and the noise component ni over the
i-th RE. The receiver then combines the elements of each group
using the combining matrix α to form new mp symbols at each
group; the first new symbol is constructed by combining the
previous symbols using the first row of α and so on. Note that
such a combination can be expressed in a matrix form through
multiplying α by a new matrix comprising the mp rows of G
corresponding to the symbols of each group. Then it is easy
to verify that the m′-th new equation of each group (which is
constructed through the m′-th row of α), m′ = 1, 2, ...,mp,
contains at most K1 = K/mp = kfm

r−1
p different symbols

from the set {xm′ , xm′+mp
, ..., xm′+kfmr

p−mp
} (recall that

the product of αP is a diagonal matrix), i.e., the number of
unknown variables is reduced by a factor of mp. Also the
effective SNR of each symbol in the m′-th new equation is
increased by a factor of γm′ .

Second Recursion: Note based on the above explana-
tion that after the first recursion the m′-th new equation
of each group can only contain symbols from the set
{xm′ , xm′+mp

, ..., xm′+kfmr
p−mp

}. This means different equa-
tions of a given group contain disjoint sets of symbols while
equations with the same index of different groups (e.g., the
m′-th equation of all groups) contain symbols from the same
set. Therefore, the receiver in the second recursion forms mp

super-groups of M2 = M1/mp = mfm
r−1
p equations (note

that in the first recursion we had m0
p = 1 super-group of

size M1 = M ) by placing the m′-th new equation of each
of those mfm

r−1
p groups in the first recursion into the m′-th

super-group. Now, the receiver follows exactly the same pro-
cedure as the first recursion over each of these disjoint mp

super-groups with the mp times smaller size of M2, i.e., divides
the equations in each of super-groups into M2/mp = mfm

r−2
p

groups of mp equations and combines the signals within each
group using the combining matrix α. Following the same
logics we can argue that the maximum number of unknown
variables at each of the new equations is reduced by a factor
of mp from K1 to K2 = K1/mp = kfm

r−2
p , and the SNR of

the symbols in the m′′-th new equation, m′′ = 1, 2, ...,mp, of
each of the groups in the m′-th super-group is increased by a
factor of γm′′ from γm′ in the first recursion to γm′γm′′ .

Final Recursion: By induction, it is easy to verify that in the
r-th recursion we will have mr−1

p super-groups of size Mr =
M/mr−1

p = mfmp. Therefore, the receiver in the r-th itera-
tion divides the equations within each of these Mr super-groups
into Mr/mp = mf groups of size mp and combines the sym-
bols of each group using α to get equations containing at most
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Figure 1. Tree diagram representation of the recursive detection and the result-
ing individual SNR gains.

Kr = K/mr
p = kf unknown variables. Based on these argu-

ments and following the same logics we can conclude that after
the r-th iteration we end up with mr

p sets of mf equations each
containing at most Kr = kf unknown variables which are de-
fined based on the form of the rectangular matrix F and can be
processed using advanced multiuser detection algorithms such
as MAP though over the much smaller dimension of mf×kf in-
stead of M ×K. The recursive detection procedure is schemat-
ically shown through a tree diagram in Fig. 1 which further
helps to understand the progressive development of the SNRs
after each recursion.

2) Detection Complexity: Based on the above comprehensive
arguments, we can now characterize the detection complexity of
the proposed recursive algorithm to make sure its applicability.
Note that our recursive procedure results in a relatively small
size for each factor matrix, even for a large M and K; hence,
it is more informative to obtain the bounds on the number of
required operations instead of their orders which assumes the
dimension of matrices grow large.
Proposition 1. For the proposed pattern matrix structure G =
F ⊗ P⊗r, the total number of additions/subtractions and mul-
tiplications required for the recursive detection are at most

N rcv
add(mf ,mp, r) = rmfm

r
p(mp − 1) +mr

pN
rgl
add(Fmf×kf

),

N rcv
mul(mf ,mp, r) = mr

pN
rgl
mul(Fmf×kf

), (12)

respectively, where N rgl
add(Fmf×kf

) and N rgl
mul(Fmf×kf

) are the
number of additions/subtractions and multiplications in a regular
PDMA system [16] that can be obtained given the constellation
size, characteristics of the pattern matrix Fmf×kf

, and the de-
tection method applied to F such as MAP, ML, and MPA.

Proof: Based on the detection procedure in Section IV-B1,
for the pattern matrix structure GM×K = Fmf×kf

⊗P⊗r
mp×mp

,
we will end up with M = mfm

r
p equations representing the

received signals over each of M REs. By applying our recur-
sive combining method to these M equations we can convert
them to mr

p set of mf equations, each containing at most kf
auxiliary data symbols, defined based on the rectangular factor
matrix F . In order to obtain each of these M new equations,
we need to combine at most mp equations, using mp − 1 addi-
tions/subtractions, at each of r recursions. Therefore, these new
mr

p sets of mf equations can be obtained using only at most
rmfm

r
p(mp−1) additions/subtractions. Then we can apply any

advanced detection method to the resulting mr
p sets of equations

which requires an additional mr
p times the number of operations

over a much smaller factor matrix F . ■
Example 2. A PDMA system with the considered parameters
in Example 1 needs only 9 times the required operations for
applying any advanced detection algorithm to a regular PDMA

system with a much smaller pattern matrix F = [1 1], and an
extra 36 additions/subtractions.
Remark 4. The proposed method can also significantly reduce
the latency because it enables parallel processing for the mul-
tiuser detection at the receiver side. In fact, as shown in Example
1 and Fig. 1, we can apply the recursive detection to simultane-
ously process the data of different users at each recursion, i.e.,
concurrently process ml−1

p sets of equations (super-groups) at
each l-th recursion, l = 1, 2, .., r. It is worth noting that for the
regular PDMA design, the rather simple SIC detection needs to
process the data of each user one-by-one in a serial fashion.

C. Average Sum Rate
Based on the discussions in the previous parts and the system

model in this paper, we can obtain the average sum rate of the
system using the following theorem.
Theorem 2. The per-RE average sum rate of code-domain
NOMA with the pattern matrix GM×K = Fmf×kf

⊗P⊗r
mp×mp

and the proposed recursive detection can be expressed as

CM =
1

2M

∑︂
r1+r2+...+rmp=r

r!

r1!r2!...rmp !

× log2 det
(︂
Imf

+ ργr1
1 γr2

2 ...γ
rmp
mp FF t

)︂
, (13)

where Imf
is an mf ×mf identity matrix, F t is the transpose

of F , and ρ = Px/σ
2 in which Px = E

[︁
x2
j

]︁
, j = 1, 2, ...,K,

and σ2 = E
[︁
n2
i

]︁
, i = 1, 2, ...,M .

Proof Sketch: It is well known that for a regular PDMA with
the pattern matrix AM×K and the average SNR of ρ for all
of the received original data symbols, the per-RE average sum
rate is given by CPDMA

M = 1
2M log2 det

(︁
IM + ρAAt

)︁
for the

optimal MAP detection [18]. Using the recursive detection, as
elaborated in Section IV-B1 and schematically shown using a
tree diagram in Fig. 1, each of r square matrices manifest their
effect as an increase on the SNR and finally we end up with a
rectangular factor matrix F . Then it is easy to verify using the
tree digram that square matrices increase the average SNR as a
factor of γr1

1 γr2
2 ...γ

rmp
mp such that r1+ r2+ ...+ rmp = r. ■

Remark 5. Note that
∑︁

Λr

r!
r1!r2!...rmp !

= mr
p, where

Λr = {r1, r2, ..., rmp
:
∑︁mp

i′=1 ri′ = r}. Therefore, (13) con-
tains the summation of mr

p REs embedded in the Kronecker
product of P⊗r, and the remaining portion of mf = M/mr

p
will be spanned by the rectangular matrix F in (13).
Example 3. For the system parameters in Example 1 the av-
erage sum rate of all users per RE in (13) simplifies to C9 =
0.5 log2

(︁
1 + 2(4/3)2ρ

)︁
, which can also be inferred from (10).

Remark 6; Optimal Factor Matrices. When the design tar-
get is to maximize the average sum rate, the optimal pattern
matrix design can be formulated as the selection of an appro-
priate rectangular matrix F ∗ together with the v∗-th square
matrix in Algorithm 1 with the corresponding set of SNRs
{γv∗,1, γv∗,2, ..., γv∗,mp}, such that they result in the maximum
sum rate in (13). Satisfying further design targets such as the
users’ individual rate [21] deserves future studies.
Remark 7. Given the v-th square factor matrix P v , we can ap-
ply SIC detection to some of the mp equations in (11) to detect
the j-th auxiliary data symbol xl

j with a higher SNR γv,j , for
some j ∈ {1, 2, ...,mp}. This evidently increases the average
sum rate in (13); however, it may increase the error probability
due to the error propagation problem in SIC detection, resulting
in an interesting trade-off between the rate and reliability. This
mechanism also increases the latency because we should wait
for the detection of some symbols before starting the detection
of the others.
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Figure 2. Average capacity of various multiple access mechanisms including
the traditional OMA, regular PDMA, and our proposed recursive method.

Example 4. After detecting the auxiliary data symbols t1 and
t4 in (8) using the first and second equations in (9), we can
form Z4 + Z7 − t1 − t4 = 4t7 + n′

4 + n′
7, instead of the third

equation of (9), to detect t7 with a twice larger SNR rather
than the factor of 4/3. In this case, using (13), the average
sum rate will increase to C9 = (4/18) log2

(︁
1 + 2(4/3)2ρ

)︁
+

(4/18) log2 (1 + 2(8/3)ρ) + (1/18) log2
(︁
1 + 2(2)2ρ

)︁
.

V. NUMERICAL RESULTS

In this section, we provide the numerical results for the aver-
age sum rate of various configurations, including the traditional
OMA, regular PDMA with the reported optimal pattern matri-
ces in [16] such as 3×6 and 4×8 matrices with the row weight
df = 4, and our proposed recursive code-domain NOMA with
the square factor matrices obtained from Algorithm 1. By run-
ning Algorithm 1 for mp = 3, we get the optimal square matrix
G3×3 in Eq. (7) and the combining coefficients and individual
SNRs reported in Example 1. Moreover, for mp = 4 Algorithm
1 results in four optimal square matrices of the same form and
the same set of SNRs. A sample of such an optimal square ma-
trix P 4×4 along with the corresponding combining matrix α4×4

is as follows

P 4×4=

⎡⎢⎣0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 0

⎤⎥⎦, α4×4=

⎡⎢⎣0 −1 1 1
0 1 −1 1
0 1 1 −1
1 0 0 0

⎤⎥⎦ . (14)

Therefore, based on the combinations defined by the matrix
product of αP , we get the SNR gains of γ1 = γ2 = γ3 = 4/3,
and γ4 = 1.

Fig. 2 shows the per-RE average sum rate of various multiple
access techniques. It is observed that both regular PDMA and
our proposed code-domain NOMA mechanisms significantly
outperform the traditional OMA method. For the simulation of
our proposed method we obtained the square factor matrices
from Algorithm 1 and assumed the rectangular factor matrix
F = [1 1]. Fig. 2 demonstrates that, for relatively similar
system parameters, our proposed method with the simple re-
cursive detection approaches the capacity of regular PDMA
with the optimal pattern matrix AM×K and optimal MAP de-
tection, i.e., CPDMA

M = 1
2M log2 det

(︁
IM + ρAAt

)︁
. However,

due to the remarkably lower complexity of our method, we
can exploit higher pattern matrix dimensions (by increasing
r) and also apply SIC detection at some recursions similar to
Example 3 to get larger sum rates while achieving such gains
through larger pattern matrix dimensions are questionable for
the regular PDMA.

VI. CONCLUSION

In this paper, we proposed a low-complexity recursive ap-
proach toward code-domain NOMA based on factorizing the
spreading pattern matrix as the Kronecker product of some
smaller factor matrices. We observed that the proposed method,
with the simple recursive detection, approaches the average
sum rate of regular PDMA technique with optimal detection.
The proposed method benefits from a significantly lower com-
plexity and latency and, through realizing large-dimension
pattern matrices, paves the way toward massive nonorthogonal
multiplexing for the broad range of 5G applications.
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